Contrastive Triple Extraction with Generative Transformer

نویسندگان

چکیده

Triple extraction is an essential task in information for natural language processing and knowledge graph construction. In this paper, we revisit the end-to-end triple sequence generation. Since generative may struggle to capture long-term dependencies generate unfaithful triples, introduce a novel model, contrastive with transformer. Specifically, single shared transformer module encoder-decoder-based To faithful results, propose triplet training object. Moreover, two mechanisms further improve model performance (i.e., batch-wise dynamic attention-masking triple-wise calibration). Experimental results on three datasets NYT, WebNLG, MIE) show that our approach achieves better than of baselines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triple Generative Adversarial Nets

Generative Adversarial Nets (GANs) have shown promise in image generation and semi-supervised learning (SSL). However, existing GANs in SSL have two problems: (1) the generator and the discriminator (i.e. the classifier) may not be optimal at the same time; and (2) the generator cannot control the semantics of the generated samples. The problems essentially arise from the two-player formulation...

متن کامل

Geometry-Contrastive Generative Adversarial Network for Facial Expression Synthesis

In this paper, we propose a geometry-contrastive generative adversarial network GC-GAN for generating facial expression images conditioned on geometry information. Specifically, given an input face and a target expression designated by a set of facial landmarks, an identity-preserving face can be generated guided by the target expression. In order to embed facial geometry onto a semantic manifo...

متن کامل

Learning Multi-grid Generative ConvNets by Minimal Contrastive Divergence

This paper proposes a minimal contrastive divergence method for learning energy-based generative ConvNet models of images at multiple grids (or scales) simultaneously. For each grid, we learn an energy-based probabilistic model where the energy function is defined by a bottom-up convolutional neural network (ConvNet or CNN). Learning such a model requires generating synthesized examples from th...

متن کامل

Deep generative-contrastive networks for facial expression recognition

As the expressive depth of an emotional face differs with individuals, expressions, or situations, recognizing an expression using a single facial image at a moment is difficult. One of the approaches to alleviate this difficulty is using a video-based method that utilizes multiple frames to extract temporal information between facial expression images. In this paper, we attempt to utilize a ge...

متن کامل

From the Workfloor: Developing Workflow for the Generative Model Transformer

This document describes an experiment with the purpose of developing a proof-of-concept for a prototype for a workflow component for GMT, the Generative Model Transformer Open Source effort. It discusses the challenges we met in trying to adhere to standards and the problems of using existing “wizards”. Despite this, generative development proved to be effective.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2021

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v35i16.17677